CIRCULATION COPY SUBJECT TO RECALL IN TWO WEEKS UCRL-83882 PREPRINT MEASUREMENT OF DT NEUTRON-INDUCED ACTIVITY IN GLASS MICROSHELL LASER-FUSION TARGETS Stephen M. Lane E. Michael Campbell Charles Bennett This paper was prepared for submittal to Applied Physics Letters. February 14, 1980 #### DISCLAIMER This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. Measurement of DT neutron-induced activity in glass microshell laser-fusion targets* Stephen M. Lane, E. Michael Campbell, and Charles Bennett Lawrence Livermore Laboratory, University of California Livermore, California 94550 #### **ABSTRACT** Laser-fusion targets consisting of DT gas contained in Teflon-coated glass microshells produce 14.1-MeV neutrons that can interact with the 28 Si nuclei in the glass to produce radioactive 28 Al. Using a very efficient collection-detection scheme that could detect the decay of 10% of the 28 Al created, we identified these nuclei by their 1.78-MeV gamma ray that decayed with a 2.2-min half-life. From the number of 28 Al nuclei created and the neutron yield the compressed glass areal density was found to be 0.0059 g/cm 2 . ^{*}Work performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore Laboratory under Contract No. W-7405-Eng-48. In an imploded laser-fusion target consisting of DT gas encapsulated in a glass microshell, the thermonuclear neutrons activate the 28 Si atoms in the glass via the 28 Si(n,p) 28 Al reaction. By knowing the neutron yield and the total number of 28 Al atoms created, the areal density (pAR) of the compressed glass shell at the time of peak neutron production can be found. The glass pAR can then be used as input to simple models or computer simulations to estimate the compressed density of the fuel. Here, we describe a recent experiment at the Lawrence Livermore Laboratory Shiva laser facility in which the activity found in the collected target debris was identified by its decay rate as 28 Al. The amount of activity was then used to derive the compressed glass pAR. The targets used in this experiment were glass microshells with inner diameters of 140 μ m and wall thicknesses of 5 μ m (Fig. 1). They were filled with a 10 mg/cm³ equimolar mixture of DT gas, and coated with 15 μ m of Teflon.⁴ The glass constituents were 76% by weight SiO₂, 7.5% B₂O₃, 14% Na₂O, and 2.25% K₂O. A laser energy of 4 kJ in a 200-ps Gaussian pulse was directed by 20 individually focused beams onto the target's Teflon ablator. The heating and subsequent blow off of the ablator compressed the glass pusher and the fuel. It was estimated from both optical and plasma calorimetry that 20% of the incident laser energy was absorbed. Typical neutron yields of 1 to 7×10^8 were obtained. Additional details of the experiment will be described in forthcoming articles. A portion of the debris from the exploding target was collected by placing a 5-cm-diameter by 16.5-cm-long aluminum cylinder (collector) 1 cm from the target (Fig. 2). Opposite the collector, a dish-shaped tantalum reflector also 5 cm in diameter was placed at a distance of 2.5 cm from the target. The collector cylinder was lined with $20-\mu m$ -thick titanium foil with the front 3 cm covered with an additional $50-\mu m$ -thick layer of tantalum foil to protect against blast damage. It took 17 s for an automated system to withdraw the collector from the evacuated target chamber and transfer it to the counting facility. The amount of collected debris was determined in two auxiliary experiments using identical targets and laser conditions to those described above. In these experiments, however, the microshells were made slightly radioactive by placing them in a light-water reactor and allowing thermal neutron capture to create radioactive 24 Na (t_{12} = 15 h) from the 23 Na in the glass. The fraction of target debris collected was then measured by determining the ratio of the 24 Na activity found on the collector foils following a laser shot to that known to be present in the target. The average amount of target debris collected in these two experiments was 55.3 + 0.5%. Both the 24 Na and 28 Al activities were measured with a 25-cm-diameter by 25-cm-long NaI (Tl) detector which had a 5-cm-diameter, 15-cm-deep well. The 28 Al decays with a 2.24-min half-life by the emission of a β particle followed by a 1.78-MeV gamma ray. The measured detection efficiency of the NaI(Tl) detector at 1.78 MeV was 33 \pm 4%. A lead shield 10-cm thick surrounding the detector reduced the background in the 300-keV-wide, 1.78-MeV window to 88 counts/min. In the $\rho\Delta R$ experiment, 4.1 kJ were delivered to the target in a 212-ps pulse producing a neutron yield of 6.7 \times 10⁸. The detector was loaded with the collector foils and switched on 1.36 min after the laser shot. An activity was then observed that decayed with a half-life of 2.16 + 0.16 min. which gives us confidence that we are indeed measuring the 2.24-min activity from 28 Al (Fig. 3). Previous experiments reported in the literature did not have sufficient activity to identify the radioactive nuclide. ² Equation (1) relates the detected number of decays N_C to the total number of activated atoms created N* by accounting for the collection efficiency η_C , the detection efficiency η_d , the delay time between the laser shot and commencement of counting t, the counting interval Δt (taken to be 5 min), and the 28 Al decay constant λ : $$N^* = \frac{N_c}{\eta_c \eta_d e^{-\lambda t} \left(1 - e^{-\lambda \Delta t}\right)}.$$ (1) The 770 net counts detected in the first 5 min of counting indicate that 7960 28 Al atoms were created. Thus, we are able to detect nearly 10% of the total activation yield of the target. This clearly demonstrates the extreme sensitivity of neutron-activation technique. Using our more sophisticated β - γ coincidence counting technique which reduces the background rates by a factor of 200, we are able to detect total activation yields of only 100 atoms. The number of activated atoms created can now be related to an average $\rho\Delta R$ by equation (2), where Y_n is the neutron yield (6.7 × 10^8), σ is the $^{28}Si(n,p)^{28}Al$ cross-section (0.250 b), f is the fraction of ^{28}Si atoms in the pusher (0.25), A_w is the average atomic weight of the pusher (20 g), and A_o is Avogadro's number: $$\rho\Delta R = \frac{N^*}{Y_n \sigma f A_0/A_w} = 5 \times 10^2 \frac{N^*}{Y_n} . \qquad (2)$$ In this experiment, the pusher areal density was 0.0059 ± 0.0015 g/cm². This represents a 5.4-fold increase in the pusher $\rho\Delta R$ from its initial value. From this areal density, simple models and simulation codes suggest fuel densities of 1 to 2 g/cm³ were attained. Using an extremely efficient collection-detection system and a high yield target, we have measured a 2-min gamma ray activity at 1.78 MeV. We conclude that no nuclei could produce this signal other than 28 Al created in the pusher by the 28 Si(n,p) 28 Al reaction with 14-MeV DT neutrons. The pusher areal density of 5.9 mg/cm 2 inferred from this measurement suggests a DT density at burn time of 1 to 2 g/cm 3 . ### **REFERENCES** - ¹F. J. Mayer and W. B. Rensel, J. Appl. Phys. <u>47</u>, 1491 (1976). - ²E. M. Campbell, W. M. Ploeger, P. H. Lee, and S. M. Lane, Lawrence Livermore Laboratory Report No. UCRL-83096, 1979, submitted for publication, Phys. Rev. Lett. - ³E. M. Campbell, H. G. Hicks, W. C. Mead, L. W. Coleman, C. W. Hatcher, J. H. Dellis, M. J. Boyle, J. T. Larsen, and S. M. Lane, Lawrence Livermore Laboratory Report No. UCRL-83072, 1979, submitted for publication, J. Appl. Phys. - ⁴Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable. #### NOTICE "This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights." ## Figure Captions - FIG. 1. Laser-fusion target consisting of a Teflon-coated glass microsphere filled with $10~\text{mg/cm}^3$ of DT gas. - FIG. 2. Target debris collector. An aluminum tube lined with titanium and tantalum foil was placed 1 cm from the target opposite a dish-shaped reflector. With this arrangement, 55% of the target debris adhered to the foil. - FIG. 3. Decay curve obtained from gamma activity (1.63 to 1.93 MeV) detected in the collected target debris. The 2.2-min half-life indicates that we are observing 28 Al. Initial inner diameter (\sim 140 μ m)